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The FAST-MAC circulation control model was modified to test an array of unsteady sweeping-jet 
actuators at realistic flight Reynolds numbers in the National Transonic Facility at the NASA 
Langley Research Center.  Two types of sweeping jet actuators were fabricated using rapid 
prototype techniques, and directed over a 15% chord simple-hinged flap.   The model was configured 
for low-speed high-lift testing with flap deflections of 30° and 60°, and a transonic cruise 
configuration having a 0° flap deflection.   For the 30° flap high-lift configuration, the sweeping jets 
achieved comparable lift performance in the separation control regime, while reducing the mass flow 
by 54% as compared to steady blowing. The sweeping jets however were not effective for the 60° 
flap.  For the transonic cruise configuration, the sweeping jets reduced the drag by 3.3% at an off-
design condition.  The drag reduction for the design lift coefficient for the sweeping jets offer is only 
half the drag reduction shown for the steady blowing case (6.5%), but accomplished this with a 74% 
reduction in mass flow. 

Nomenclature 
b   = wing span (in)         UEXIT   =  average sweeping jet-exit velocity (ft/sec) 
CFD  = Computational Fluid Dynamics     UEXIT (HW) =  sweeping jet-exit velocity, hot wire (ft/sec) 
Cp = pressure coefficient UTHROAT =  sweeping jet throat velocity (ft/sec) 
c = chord (in)  USM3D =   unstructured Navier Stokes 3D flow solver  
CDIS =  nozzle discharge coefficient  wI =  ideal weight flow (lbm/sec) 
Cµ = momentum coefficient for steady jet wM =   measured weight flow (lbm/sec)  
C" = average momentum coefficient for  a =   angle of attack (degrees) 
  sweeping jet at jet-exit h =   span location/b 
h = nozzle throat exit height (in) 
M∞ = wind tunnel Mach number  
NPR = nozzle pressure ratio (Po(J)/P$) 
Po(J) = jet total pressure (psi)	
Po(THROAT) = throat total pressure (psi) 
P$ = wind tunnel static pressure (psi)  
𝑞$ = freestream dynamic pressure (psf) 
ReC = chord Reynolds number 
S = wing plan form area 
SMSS =  Sidewall Model Support System 
TO =  wind tunnel total temperature (oR) 
TO (JET) = jet total temperature (oR) 
UJET = throat jet velocity for steady blowing  
  configuration (ft/sec) 
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Introduction 
he study of circulation control has a long history,1,2,3,4,5  but it has not been applied to commercial aircraft due to 
system requirements that include the air source (i.e., engine bleed), design complexity, weight penalties, engine-

out conditions, etc. Application of these blowing systems to takeoff and landing configurations have been 
demonstrated in a laboratory environment for boundary layer separation management, which led to improved 
performance. However, those benefits have not crossed the cost/benefit threshold for this technology to buy its way 
onto an aircraft for the high-lift applications alone. It has become more apparent that the trade studies of circulation 
control applied to high-lift and cruise configurations are closely coupled, and the combined performance would be 
enough to overcome the barriers to its application to commercial aircraft. The realization of improved cruise 
efficiency at realistic flight conditions potentially changes the paradigm for circulation control applications. 

This paper will focus on the application of sweeping jets to high-lift and cruise configurations with the intent of 
achieving the flight performance of a vehicle with minimal bleed requirements. It is also imperative to evaluate the 
benefits of these advanced active flow control (AFC) systems at realistic flight conditions that include Mach number 
and Reynolds number. It is also recognized that Computational Fluid Dynamics (CFD) has become an integral part 
of the aircraft design process, and those codes require a benchmark data set (such as circulation control described 
below) to be a part of the validation process.6,7,8  When applying AFC systems to scaled models, it is critical that the 
flow at the intersection of the outer mold line (OML) and the jet-exit is representative of the actual flight vehicle.  
Since the performance is typically characterized in terms of nondimensional forces and the jet momentum 
coefficient, it is necessary to profile the weight flow and velocity of the jet. This paper will also focus on reducing 
the weight flow requirements established with steady blowing associated with the Fundamental Aerodynamic 
Subsonic Transonic-Modular Active Flow (FAST-MAC) model using a sweeping jet technology. This model 
utilized an advanced circulation control high-lift and cruise system that has been tested multiple times in the NASA 
Langley National Transonic Facility (NTF) shown in Figure 1. 

The circulation control methods that will be discussed throughout this paper introduces momentum directly to 
the near-wall region via a blowing slot, located near the wing trailing edge, and directed over a simple short-chord 
hinged-flap as shown in Figure 2. For steady circulation control applications, the flow is typically characterized by 
jet momentum (Cµ) or nozzle pressure ratio (NPR) that defines the jet velocity (UTHROAT) at the minimum area along 
the flow path.  The minimum area is located at the jet-exit for the steady blowing configuration.  The jet momentum 
is generally related to ideal conditions as shown in Equation 1, where internal boundary layer growth is ignored and 
weight flow is a function of the total pressure measured in the settling chamber of the aft plenum. The jet 
momentum can also be characterized by using the measured weight flow and the nozzle discharge coefficient as 
shown in Equation 2.  The average jet velocity used in Equations 1 and 2 assumes that the flow expands 
isentropically to the freestream static pressure and is characterized by the NPR and jet temperature (TO(JET)) shown in 
Equation 3. Figure 3 shows a schematic of a sweeping jet actuator, which creates a self-sustaining oscillating jet, due 
to the feedback tubes alternating the internal flow path direction in the exit nozzle.  The minimum throat area is now 
inside the actuator, and not at the exit plane.  The time-
dependent external velocity field of the sweeping jet is difficult 
to measure. For these reasons, the calculation of a momentum 
coefficient for the sweeping jet was modified, using an average 
exit velocity (Equation 4) instead of the throat velocity as 
follows. 

The correlation of the performance that is measured by the 
balance is based on the averaged Cµ  at the exit of the nozzle. 
However, the measured NPR and jet velocity are based on the 
nozzle throat characteristics. For the steady blowing 
configuration, the throat is located at the jet-exit, but for the 
sweeping jet the throat is upstream of the jet-exit. This 
complicates the definition of UEXIT used in the calculation of Cµ. 
The hot-wire measurement of the averaged jet velocity 
(UEXIT(HW)) along the exit plane of the entire wing span has not 
yet been completed.  As such, the values used for UEXIT will be 
based on the ratio of the measured average velocity across the 
exit of a bench-top mounted single actuator, and the throat velocity of the actuator in quiescent conditions shown in 
Figure 4. The magnitude of the sweeping jet velocity at the nozzle exit plane is a function of the sweeping jet 
diffuser and is not uniformly distributed at the exit of the sweeping jet9 as shown from hot wire measurements. The 
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time averaged velocity profiles shown in Figure 4 are averaged across the exit plane of the actuator to determine the 
averaged jet-exit velocity shown in Figure 5. 

The steady performance results of the FAST-MAC model used as a baseline for this paper were acquired from 
two test entries that are described in references 10 and 11. Figure 6 highlights the low-speed high-lift performance 
observed with the steady blowing characteristics of the model.  While NPR establishes the velocity at the jet-exit for 
the steady blowing configuration, it is the momentum coefficient that is best used to collapse the model 
performance. The remainder of this paper will focus on the unsteady characteristics of the sweeping jet 
configuration as they relate to the separation control (Cµ<0.04)  conditions of the FAST-MAC model. 
 

Experimental Setup  

a. Wind Tunnel 
The NTF12 (Figure 7) is one of a limited number of wind tunnel facilities that can achieve flight Reynolds 

numbers and Mach numbers for transport type aircraft for both cruise and high-lift operations. The tunnel is a fan-
driven, closed-circuit, continuous-flow, pressurized wind tunnel capable of operating either in dry air at warm 
temperatures or in nitrogen gas from warm to cryogenic temperatures. The test section is 8.2 ft by 8.2 ft in cross 
section and 25 ft in length. The test section floor and ceiling are slotted (6 percent open), and the sidewalls are solid.  
The wind tunnel is capable of an absolute pressure range from 1 atmosphere to 8.3 atmospheres, a temperature range 
from -270°F to 130°F, a Mach number range from 0.1 to 1.2, and a maximum Reynolds number of 146x106 per foot 
at Mach 1. For the blowing test described in this paper, the temperature envelope was limited to -50°F to 120°F due 
to limitations of the model protection system.  
 

b.  FAST-MAC Model 
 
The FAST-MAC model shown in Figure 8 is based on a supercritical wing that was designed to become an NTF 

standard for evaluating performance characteristics of integrated active flow control and propulsion systems. The 
modular design and construction of the FAST-MAC model provides a capability of changing the leading edge, 
trailing edge, upper skin geometry (with or without engine simulators), and active or passive flow control 
technology.  The outer mold line (OML) of the model was optimized for a cruise Mach number of 0.85 and a lift 
coefficient of 0.50 at a Reynolds number based on mean aerodynamic chord of 30x106.  The design utilized an 
unstructured Navier-Stokes flow solver USM3D13 in conjunction with the CDISC design code.14  The CDISC design 
method is highly efficient because the geometry changes are introduced in a manner that allows both the geometry 
and the simulated aerodynamic analysis to converge in unison.  The flow was assumed to be fully turbulent, and a 
wall-function version of the Spalart-Allmaras turbulence model was employed. A tangential blowing slot was added 
at the 85% chord location on the upper surface, and it was directed over a 15% chord simple-hinged flap for both the 
cruise and high-lift modes.  

Figure 9 shows the cutaway view of the FAST-MAC semispan model geometry.  A cross section view of the 
flap region is also shown for the three available flap deflections: 0° cruise, and the low-speed deflection of 30° and 
60° for high-lift. A fixed slat geometry is used for all high-lift testing, and was optimized for the 60° flap. The wing 
has an aspect ratio of 5.0, taper ratio of 0.40, leading edge sweep of 30°, and no dihedral.  The chord length at the 
side of the fuselage is 25.0 inches, resulting in a mean aerodynamic chord of 19.4 inches. The generic fuselage is 
comprised of circular cross sections with a maximum width of 4.0 inches.  The wing is mounted in the midfuselage 
position to simplify the routing of the high-pressure air supply lines. To reduce wall boundary layer effects, the 
model was offset from the tunnel sidewall using a 2.0-inch nonmetric standoff,15 which has a profile shape identical 
to that of the fuselage centerline. 

The model design criteria were to operate at the maximum pressure limits of the facility and a temperature range 
of -50°F to 120°F.  While a typical NTF wind tunnel model such as the FAST-MAC accurately characterizes outer 
mold lines (OML) of an advanced high Reynolds number wing model, the internal flow paths are only 
representative at the jet-exit. High dynamic pressures are generally required to achieve high Reynolds number 
conditions for a typical semispan NTF model as shown in Figure 10. As such, the high model loading and resulting 
high model stresses limited accurate internal flow path geometries due to strength of materials and limited volume 
for the NTF FAST-MAC model.  
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c. Sweeping Jet Actuators  
The FAST-MAC model was modified to replace the steady blowing configuration with a design which integrated 

39 interchangable actuator cartridges into the aft plenum cover as shown in Figure 11. Typically, the exit height of 
the jet would correspond to a constant h/c of 0.0021, and this resulted in a slot height variation of the cartridges 
along the span to maintain that specification.  Unfortunately, fabrication limitations restricted the wall thickness of 
the outboard actuators to a constant height of 0.040 inches, resulting in flow paths three and four to have a varying 
h/c as shown in Table 1. 

The actuator spacing, orientation, and location of the actuators used in this test were influenced by the work of 
Woszidlo et al.16  where a parametric study of the sweeping jet actuator used a 2D geometry. Melton17 applied a 
similar spacing for a swept model and this was used as a guide for the current test. However, spacing of the FAST-
MAC cartridges was restricted due to internal structures that held the plenum cover onto the wing. The ratio of the 
average distance between cartridges and actuator exit width varied from the wing root to tip as seen in Table 1. The 
spacing ratio of the distance between centers and the nozzle exit was grouped into three sections based on actuator 
sizes. This resulted in spacing ratios of 1.6 for the inboard flow path, 2.1 for the midspan actuators, and 1.7 for the 
outboard two flow paths.  

Two actuator configurations (shown in Figure 12) were used throughout the test, and they were optimized 
based on the actuator authority, which is defined as the sweep range across the flap. Actuator A has a total sweep 
angle of q = ±45o, while actuator AA has a sweep angle of q = ±35.5o.  Pretest work relating to the design and 
laboratory testing of actuator performance in a quiescent environment is described in references 9, 18, and 19. The 
Actuator A configuration focused on the application to high-lift whereas the Actuator AA geometry was intended 
for the cruise configuration. Differences in the estimated mass flow requirements for the cruise configuration and the 
high- lift configuration at a comparable NPR resulted in geometry differences between the two actuator designs. 
Indeed, the throat area of the cruise geometry was 1.877 times larger than the high-lift geometry resulting in a 
greater mass flow capability for cruise conditions as highlighted in Figure 13. 

Two different fabrication techniques were implemented for the sweeping jet cartridges. Initially, it was 
believed that the temperature variations expected during the test would deform the actuators unless a metal 
configuration was used. The metal actuator cartridges (shown in Figure 14) were built using a hybrid electrical 
discharge machining (EDM) / plating process. A 300-series stainless steel material was used for components that 
were nickel electroplated to provide strength and a thermally compatible base. The stainless steel surrounding 
structure and internal flow islands were machined via wire EDM to provide a press fit with an erodible aluminum 
mandrel. The assembly was then nickel electroformed to build-up the desired finish contour thickness before being 
machined to the correct planform and aerodynamic contour dimensions. Finally, the aluminum mandrel was etched 
away in a caustic bath, leaving the flow path embedded in the stainless steel/nickel structure. The stainless steel was 
pretreated before assembly to maximize adhesion to the nickel, producing a near homogeneous structure.  

When those cartridges were installed into the FAST-MAC model, the standard bolt torque was too great and 
cracks formed in the electroformed material. Those cracks created an unacceptable leak path resulting in the 
decision to rebuild the cartridges using a plastic stereolithography (SLA) rapid prototyping technique.  It was 
determined that the manufacturing tolerance of the SLA sweeping jet actuators could be maintained to within ±0.001 
inch. That equated to ±2.5% of the smallest throat dimension to be used in the FAST-MAC model. To verify that the 
cold environment of the tunnel would not visibly alter the geometry of the plastic SLA actuator cartridges, a 
frequency test was performed in a cryogenic test chamber at 3 times the expected pressure, which was limited by 
leaks at the actuator gasket.  An example of the temperature effect on the sweeping frequency is shown in Figure 15, 
while the pressure effect or NPR is shown in Figure 16. The extremely cold temperature and elevated pressure did 
not alter the geometry of the actuator. However, when the actuator was exposed to warm temperatures greater than 
140°F, the thin upper skin of the actuator would deform and become wavy. To avoid this problem, cool air was 
continuously blown through the actuator when tunnel temperatures exceeded 120°F. 

The actuator Sound Pressure Levels (SPL) were also evaluated in the laboratory prior to installation in the 
model. Figure 17 highlights an example of the SPL for the two actuator geometries used in this test series. The 
higher mass flow through actuator AA created a 5 dB higher SPL than actuator A at the highest NPR. 
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d.  Air Delivery System 
The dual flow air delivery system20 is a high-pressure air system that provides a continuous source of clean, dry 

air to the test article through the Sidewall Model Support System (SMSS).  The FAST-MAC model utilized only the 
high-flow leg of this system as shown in the schematic in Figure 18, and it is equipped with coarse and fine control 
valves that can provide flow rates up to 23 lbm/sec. The system has a multiple critical venturi (MCV) system located 
outside the tunnel plenum to measure the total weight flow. The total temperature of the model air stream can be set 
from 20°F to 120°F by using a steam heating system. The FAST-MAC model was designed to enable the flow to be 
tailored along the span by independently controlling the flow through any combination of the four flow paths 
distributed along the span of the wing.  The challenge for this test was the ability to set the very low flow rates 
identified in Figure 13. This was accomplished by balancing the NPR settings with the model valves while using the 
fine flow control valve and the smallest venturi in the MCV. The jet-exit total pressure parameters used in the 
calculation of the throat velocity and Cµ have measurement uncertainties that are less than ±0.1% of reading for the 
range of flow conditions tested. The weight flow measured in the NTF air station by the MCV system has an 
uncertainty of ±0.35% of reading.21  

e.  Balance System 
The NTF 117S is a 5-component balance that is mounted inside the SMSS as shown in Figure 19. The SMSS 

provides a heated enclosure that maintains a stable temperature for the balance and the pitch mechanisms. The 
balance characteristics are highlighted in Table 2.   

The entire SMSS/balance/air system was calibrated to determine the pressurization and temperature effects of 
the Pressure Interface Piece (PIP). The calibration included the range of pressures needed for this sweeping jet test 
series. Those pressure tares are subtracted from the balance data to obtain pure aerodynamic loads.22, 23 Recent 
improvements in the balance temperature control and other SMSS modifications resulted in a transonic 2-sigma drag 
repeatability of ±3 counts.24, 25 Those improvements were necessary to meet the requirements for this sweeping jet 
study due to the small blowing effects associated with the separation control region of the FAST-MAC high-lift 
system and the cruise drag benefits in the range of Mach = 0.85 – 0.88. 
 

Performance Results 
 
  In propulsion simulation or testing that involves blowing concepts, the force and moment data acquired from 

a strain gauge balance frequently include the effects of the static thrust from the nozzle. In the cases where the thrust 
is metric (i.e. sensed and measured by the balance), the effect of the static thrust needs to be removed from the wind-
on balance measurements to isolate the pure aerodynamic and jet-induced effects in the force and moment data. The 
data shown in this report will focus on the pure aerodynamic effects where the thrust is removed. The procedure for 
this thrust removal is described in Reference 26.  

a.  High-lift results 
 
Sweeping jet configuration for the 30° flap 

As discussed above, the focus of the high-lift testing was to determine if the sweeping jet actuators would 
perform adequately in the separation control regime. Given the recent upgrades to the force and moment 
measurement system, the model was first configured to repeat the steady blowing configuration with the original 
nondimensional slot height of h/c = 0.0021. The focus of these data will be on the change in lift that is referenced to 
the nonblowing condition.  

After a limited number of steady blowing runs were completed, the new plenum cover plate shown in Figure 
20 was installed to allow the sweeping jet cartridges to be evaluated.  The actuator A configuration was installed 
first and a brief study performed to determine if all of the outboard cartridges were required. It should be noted that 
extra cartridges were included toward the wingtip for the transonic testing, anticipating a larger mass flow 
requirement to achieve shock movement.  This study closed off the middle actuator of each "trio" grouping using a 
solid gasket at the cartridge inlet.  The resulting spacing of active cartridges mimicked the spacing in the two 
inboard plenums. The results clearly demonstrated that all cartridges were required to attach the flow at the outboard 
portion of the flap.  The following results were obtained with all sweeping jet cartridges active.   
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The region of interest for this study was limited to the separation control regime that ends at approximately a 
Cµ = 0.02 and DCL of 0.4 for the 30° flap. A comparison of the lift performance for the two sweeping actuator 
configurations with the steady blowing configuration for the 30° flap deflection at 0° angle of attack is shown in 
Figure 21. The two sweeping jet configurations were comparable to each other but at a lower momentum coefficient 
than the steady configuration, indicating a potential 55% lower mass flow of the sweeping jets to achieve the same 
lift as the steady blowing configuration. Actuator AA was able to replicate the lift coefficient increment of 0.40 at 
the end of the separation control regime, while the Actuator A fell short by 20%.  It should be clearly noted that the 
ending point for each sweeping jet mass flow sweep was based on the pressure safety limit of the model hardware, 
and not the available mass flow from the model supply piping.  Recall that the actuator AA was designed to have a 
larger throat area, and thus provide a higher mass flow for a given supply nozzle pressure ratio.  This increase in 
mass flow for the actuator AA accounts for the higher lift increment.  For a comparable lift increment, the actuator 
A is more efficient as it operates at a lower value of Cµ.  Figure 22 presents the same results in terms of nozzle 
pressure ratio which can be related to the throat velocity of each configuration. It should be noted that the average jet 
velocity used to determine the momentum coefficient at the exit plane of the sweeping jet actuators is significantly 
less that the throat velocity as described by Equation 4. Figure 23 highlights the DCL for all three configurations 
using the measured mass flow. This demonstrates that the sweeping jets can achieve the same lift performance as the 
steady blowing configuration with 54.7% less mass flow and is consistent with the reduction in Cµ shown in Figure 
21. 

The influence of angle-of-attack on the Actuator AA configuration is shown in Figure 24 at a Reynolds 
number of 10x106.  The nonblowing case is compared to NPR=1.49 and 3.01 conditions. A nearly constant lift 
increment is observed for both blowing conditions over the entire angle-of-attack range, indicating robust 
performance of the actuators. Stall for the 30° flap was not achieved as it was beyond the 28 degree limits of the 
angle-of-attack system as it was configured. The effect of actuator AA on the outboard wing pressure distribution is 
examined in Figure 25 at a = 0°.  Both configurations are at similar lift coefficient values, and the pressure 
distributions agree quite well.  The steady blowing case has a higher suction peak at the flap crest, while the 
Actuator AA configuration has more suction downstream of the flap crest.  Similar agreement was observed at the 
inboard wing stations.  

Figure 26 compares the sweeping jet results for two Mach numbers to the steady blowing configurations from 
a previous FAST-MAC experiment described in Reference 25.  The momentum for both Mach number 
configurations are similar but the blowing authority of the sweeping jet and steady blowing configuration at the 
lower Mach number results in a higher DCL. The momentum data from the Mach = 0.2 condition is consistent with 
the mass flow reduction of 55% shown in Figure 21. The steady blowing results at a Mach = 0.1 are believed to be 
in the super-circulation regime showing a comparable mass flow reduction but with an 8% increase in lift compared 
to the Mach 0.2 condition. 

 
Sweeping jet configuration for the 60° flap 
 The final high-lift case examined was the 60° flap configuration.  The actuator-AA was used for the 60° flap, as 
its higher mass flow characteristics would be advantageous for this challenging flap deflection.  Figure 27 compares 
the sweeping jet results at a Mach = 0.2 to a steady blowing case from the second FAST-MAC experiment described 
in Reference 25.  The separation control regime for the steady blowing configuration ends at Cµ ~ 0.040 with a lift 
coefficient increment of 1.1.  The sweeping jets only provided a lift increment of approximately DCL of 0.10 because 
the flow was limited to a Cµ = 0.0045 due to limits on the internal plenum pressure. This resulted in a small region 
of attached flow on the inboard portion of the flap.  The flap pressures indicated that the three outboard rows 
separated at the crest of the flap, as if the sweeping jets were not present. Although the sweeping jets provided a 
minimal lift increment in this application, the small lift increment was observed to be consistent with the low 
blowing conditions of the steady blowing configuration.  Further research is required to formulate a sweeping jet 
arrangement for such a challenging case. 
 

b.  Transonic Cruise Results 
 

The flow physics encountered at the transonic conditions differ significantly from those in the low-speed 
regime discussed above.  The flow is dominated by compressibility and the presences of shockwaves on the wing.   
Previous steady blowing results for the model indicated that the required jet-exit velocity needed to be at or above 
the freestream Mach number to influence the shockwave on the wing.  The presence of shock-induced flow 
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separation at off-design conditions further challenges the application of active flow control.   These factors fed 
directly into the design of actuator AA, specifically maintaining sweep authority at supersonic NPR levels.   
 
Steady Blowing 
  The transonic steady blowing results obtained during the third test of the FAST-MAC model (NTF Test 222), 
focused on evaluating numerous upgrades to the force and moment measurement system, aimed at improving the 
transonic drag repeatability at the mild cryogenic condition of -50°F.  Reference 23 gives a detailed overview of the 
successful system-level engineering approach, which included a significant redesign of the Balance Cavity 
Recirculation System (BCRS) heating system, an improved pressure-tare balance calibration, and additional 
alignment pins in the high-pressure air/model-delivery interface.   The model was configured with a fullspan 
nondimensional slot height of h/c = 0.0021.  The analysis for the repeat runs presented below indicated a 
2s repeatability variation of the drag coefficient of CD = ±0.0003.    
 The effect of the steady blowing on the wing pressures at an off-design Mach number of 0.88 are shown in 
Figure 28 at a = 3o and Re=30x106.  The nonblowing result, NPR = 1.00, indicates shock-induced flow separation 
on the outboard portion of the wing. The addition of blowing, NPR =1.79, has had a strong influence on the wing 
pressures, suggesting the flow has reattached downstream of the shockwave.   The shock has moved aft 5% chord at 
h = 0.60, and 10% chord at h = 0.80, with little change in the shock strength.  Figure 29 shows the effect of the 
steady blowing on the measured lift and drag coefficients.  At the design lift coefficient of 0.50, the drag was 
reduced by 6.5% (0.0025 or 25 counts) for NPR = 1.78 and Cµ = 0.00498.    
 
Sweeping Jet Actuators 

The only sweeping jet cartridge evaluated during the current test was Actuator AA, as it was designed 
specifically for this flow regime.  The success of the steady transonic blowing experiments had shown that the exit 
Mach number at the blowing slot needed to be at or above the freestream Mach number.  It was also anticipated that 
reducing the blowing exit area by using the discrete sweeping jet cartridges would require that the local values of 
NPR across the wing would well exceed those used in the steady blowing.  This was further reinforced by the low-
speed high-lift results that utilized NPR values around 3.00.  The same model safety pressure limit for the sweeping 
jet cartridges was still applicable for the transonic cruise testing.  This would ultimately have a limiting effect on the 
mass flow available to the model at the highest Reynolds number of 30x106 to be discussed below. 

Figure 30 shows the effect of sweeping jet actuator AA on the attached-flow wing pressure distributions at 
M=0.85, a = 3°, and Re = 15x106.  The sweeping jets have had a slight influence on the shockwave upstream of the 
blowing slot, reducing the shock strength, followed by an accelerated flow over the upper flap surface. The lower 
surface has also been slightly affected by the sweeping jets, indicating a measurable increase in pressure, 
particularly near x/c = 0.35.  Figure 31 documents the effect of the sweeping jet actuators at two NPR values as the 
angle of attack is varied.   At the design lift coefficient of 0.50, the sweeping jets reduced the drag by 1.70% 
(0.00055 or 5.5 counts). 

Figure 32 presents the effect of the sweeping jet actuator AA at the off-design condition of M = 0.88, a = 3o, 
and Re = 15x106.  The nonblowing case (NPR = 1.00) suggests shock-induced flow separation on the outboard 
portion of the wing (h = 0.80).  The sweeping jets have had a noticeable effect on the wing pressures. At h = 0.60 
the shock has moved aft slightly, and the downstream pressure recovery has improved.  At the outboard station (h = 
0.80), the shockwave has moved aft approximately 5% chord, while the downstream pressure recovery still indicates 
flow separation.   As with the steady blowing case, the shockwave strength has not been altered.  An infrared flow 
visualization technique was used in an attempt to quantify the influence of the sweeping jet cartridges on the flow, 
and document the extent of possible flow reattachment.   The technique unfortunately was not successful, as the 
sensitivity of the optical glass was not well matched to the infrared camera available.  Even though further research 
is necessary to appreciate the level of flow reattachment that may have occurred, the drag polar comparison in 
Figure 33 indicates that the sweeping jets have reduced the drag coefficient by 3.3% (0.0014 or 14 counts).   
Although the sweeping jets offer half the drag reduction shown for the steady blowing case (Figure 28), the 
sweeping jets accomplished this with an 80% reduction in mass flow. 

The drag changes achieved with the sweeping jets at both Mach numbers are plotted as a function of the lift 
coefficient in Figure 34. The 2s values for the drag coefficient repeatability (DCD ±0.0003) are shown for 
comparison.   The NPR=4.00 condition offers a broader range of drag reduction, particularly at lift coefficients 
above 0.50. 

The last condition examined was increasing the Reynolds number to the realistic flight value of 30x106, as 
shown in the wing pressure comparison at M = 0.88 and a = 3° in Figure 35.  To achieve this tunnel condition, the 
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mild cryogenic condition of -50°F was used, and a tunnel total pressure 50% higher than the ReC = 15x106 results 
presented above.  These elevated tunnel conditions coupled with the model pressure safety limit, reduced the mass 
flow that could be passed through the actuators, and thus the momentum coefficient Cµ.  Note that the Cµ value at 
ReC = 30x106 is similar to that shown at the lower Reynolds number in Figure 32.  Due to this undesired reduction in 
available mass flow, the sweeping jet actuators were observed to have less influence on the shockwave, with the 
outboard station showing a more localized effect on the shock structure.  The comparison of the drag polars in 
Figure 36 reveals that at the design lift coefficient of 0.50, the sweeping jet actuators only reduced the drag by 
0.0004, just outside the 2s values of the drag coefficient repeatability (DCD ±0.0003).  Given the unexpected 
limitation of the available mass flow from the actuators, the influence of the flight Reynolds number on the 
sweeping jet actuator authority cannot be documented at this time.   Increasing the throat area of the actuators would 
be recommended, to allow a more realistic variation of Cµ for this high Reynolds number condition. 
 

Concluding Remarks  
 

The FAST-MAC wind tunnel model was modified to allow an array of thirty-nine sweeping jet actuators to be 
tested on both the high-lift and transonic cruise configurations, at high Reynolds numbers in the National Transonic 
Facility. Two types of sweeping jet actuators were evaluated.   The first, actuator A, was a geometry with 
demonstrated performance when applied to simple-hinged flaps in high-lift mode.  The second type, actuator AA, 
was a recent design for transonic conditions and maintains sweep authority at higher nozzle pressure ratios.  The 
objective of the test was to compare the performance of the sweeping jet actuators in the separation control regime, 
to conventional steady blowing from the original open slot geometry.   The following conclusions can be drawn 
from the research. 

The actuator A sweeping jet cartridges were originally manufactured using a novel composite 
metallic/sandwich technique with electroplating bonding.  The method provided high geometry fidelity for the small 
actuator sizes, but was prone to stress cracking and leaks, when the retention fasteners in the model were torqued.  
The cartridges were remanufactured using stereo lithography rapid prototype methods.   This fabrication technique 
was also used for the actuator AA configuration.   The stereo lithography technique provided robust cartridges that 
performed satisfactory over the entire testing envelope, including mild cryogenic conditions of -50°F, and transonic 
Mach numbers. 

For the 30° flap high-lift configuration, both sweeping jet actuators were capable of reattaching the flow on the 
simple-hinged flap, providing a lift increment comparable to the steady blowing configuration, while realizing a 
mass flow reduction of 54%.   The transonic cruise sweeping jet, actuator AA, offered a slight lift performance 
advantage over actuator A, due to the increase in throat area and corresponding higher mass flow output.  The wing 
pressures with actuator AA were found to be quite similar to the steady blowing result at a comparable lift 
coefficient.   The sweeping jet actuators performed well over the entire angle-of-attack range, demonstrating 
consistent flow control authority. 

The 60° flap high-lift configuration was a significant challenge for the sweeping jet actuators.  They were only 
able to attach the flow on the inboard flap, while the remainder of the flap remained separated, providing a small lift 
increment.  Further research is needed for this large flap deflection. 

In the transonic regime, the sweeping jets did demonstrate the ability to influence the flow over the wing at the 
intermediate Reynolds number of 15x106.  At the design Mach number of 0.85, and attached flow on the wing, the 
actuator AA slightly altered the shockwave on the outer portion of the wing, and accelerated the flow downstream of 
the sweeping jets.  At the design lift coefficient of 0.50, the drag was reduced by 1.70%.  At the off-design Mach 
number of 0.88, shock induced flow separation occurs on the outboard portion of the wing at the same lift 
coefficient.   The sweeping jets moved the shockwave aft 5% chord at the 80% semispan location, with no increase 
in shock strength.   Even though the wing pressures still indicate flow separation at this station, the drag was reduced 
by 3.3%.  Although the sweeping jets offer only half the drag reduction shown for the steady blowing case (6.5%), 
the sweeping jets accomplished this with a 74% reduction in mass flow. 

As the transonic Reynolds number was increased to the realistic flight value of 30x106, the mass flow that could 
be passed through the sweeping jet actuators was limited by the model pressure safety limit, and the elevated tunnel 
total pressure.  As a result, the available range of the mass flow was not adequate to allow the actuator authority to 
be properly documented at the flight Reynolds number.   It is suggested that future testing should include variations 
in the throat area for the sweeping jet actuators to avoid this limitation. 
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Table 1. Actuator dimensions. 
 

 
 

 

Table 2. NTF SMSS Balance Loads. 
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Figure 1. Aerial Photo of NASA Langley National Transonic Facility. 

 
Figure 2.  Circulation control blowing 
slot nomenclature. 

 
Figure 3. Fundamental characteristics of a sweeping jet 
illustrating the two extremes of the jet position and the 

feedback passages that drive the oscillatory motion. 
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Figure 6. FAST-MAC high-lift performance for steady blowing at 60o flap deflection, a=0o,  
open symbols: h/c=0.0033, closed symbols: h/c=0.0022. 

 
Figure 5.  Average jet-exit velocity ratio for single actuators AA 
and A measured along the span of the actuator. 

  
 (a) THROAT: 0.080”x0.080” EXIT Y: 0.040”, q =±35.5o (b) THROAT: 0.040”x0.080” EXIT Y: 0.040”, ”, q =±45o 

Figure 4.  Hot wire comparison of performance of single actuators AA and A at actuator exit. 
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Figure 7. Sketch of the NTF highlighting the location of the SMSS 
and air station (linear dimensions in ft)  

 
Figure 8. FAST-MAC model mounted in 
the NTF test section. 
 

 
Figure 9. Cutaway view of the FAST-MAC model in high-lift mode, highlighting multiple flow paths 
and different flap configurations. 

 
Figure 10. NTF operating envelope for 
FAST-MAC, To=-50oF, MAC=19.4 inches. 

  
(a) Orientation of the sweeping 

jet actuator cartridges 

 
(b) Side view of the sweeping 

jet actuator cartridges 
Figure 11. FAST-MAC actuator 
locations. 

  
 

     
 Throat:  Throat:  

0.04”x0.08”       0.08”x0.08” 
 

Figure 12. Actuator geometry. 

 

 



 
American Institute of Aeronautics and Astronautics 

 

 

14 

  
Figure 13. Ideal mass flow characteristics for sweeping jet actuators at high-lift and cruise conditions. 

 
Figure 14. Expanded view of the plating 

configuration for the sweeping jet cartridge. 
 

Figure 16. Frequency response of Actuator A 
(Size: 2-1) at ambient temperature. 

 
Figure 15. Temperature effect on Actuator A 
(Size: 2-1) at NPR 4.06. 

Figure 17.  Sweeping jet peak frequency and 
corresponding SPL for actuators A and AA  
(Size: 4-1). 
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Figure 18. Schematic of the air delivery system for FAST-MAC with Sweeping Jets.  

 
Figure 19. Cutaway sketch of the NTF SMSS highlighting the balance and 
co-annular flow path.   

 
Figure 20. Actuator flap cover geometry highlighting the sweeping jet cartridge concept. 
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Figure 25. Wing pressures for steady blowing and 
sweeping jet blowing, Actuator AA, 30o flap deflection, 
a=0o, h=0.8, Mach=0.2, ReC=5x106. 

 
Figure 21. Comparison of lift performance of two 
sweeping jet configurations with the steady blowing 
configuration for different momentum coefficients 
for the 30o flap deflection, a=0o, Mach=0.2. 

 Figure 22. Comparison of lift performance of two 
sweeping jet configurations with the steady blowing 
configuration for different NPRs, 30o flap deflection, 
a=0o, Mach=0.2. 

 Figure 23. Mass flow reduction of sweeping jets 
compared to steady blowing, 30o flap deflection, 
a=0o, Mach=0.2. 

 
Figure 24. Comparison of sweeping jet blowing 
(Actuator AA) with baseline, 30o flap deflection, 
Mach=0.2, ReC=10x106. 
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Figure 27. Comparison of sweeping jet blowing 
(Actuator AA) with baseline, 60o flap deflection, 
Mach=0.2, ReC=10x106. 

       
 Mach=0.1  Mach=0.2 
 Figure 26. Comparison of sweeping jet and steady blowing performance at different Reynolds numbers, 30o flap 
deflection, at a = 0o. 

 
 h = 0.60  h = 0.80  

Figure 28. Effect of steady blowing on wing pressures at off-design conditions, 0o flap deflection, Mach=0.88, 
a=3o, ReC=30x106. 
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a. Polar b. Zoomed on Design CL 

Figure 31. Drag polar using AA actuator, Mach=0.85, ReC=15x106. 

 
 h = 0.60  h = 0.80  

Figure 30. Effect of sweeping jet on wing pressures at design conditions, 0o flap deflection, AA Actuator, 
Mach=0.85, a=3o, ReC=15x106. 

  
a. Polar b. Zoomed on Design CL 

Figure 29. Drag improvement using steady blowing, 0o Flap Mach=0.88, a=3o, ReC=30x106. 
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b. Polar b. Zoomed on Design CL 

Figure 33. Off-design drag polar using AA actuator, Mach=0.88, ReC=15x106. 

 
 h = 0.60  h = 0.80  

Figure 32. Effect of sweeping jet on wing pressures at off-design conditions, 0o flap deflection, AA Actuator, 
Mach=0.88, a=3o, ReC=15x106. 
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 Mach=0.85  Mach=0.88 
Figure 34. Angle-of-attack sweep showing drag benefits using AA actuator, 0o flap deflection, ReC=15x106. 
 

 
Figure 36. Off-design cruise drag benefit using AA 
actuator, Mach=0.88, ReC=30x106. 
 

 
 h = 0.60  h = 0.80  

Figure 35. Effect of Actuator AA blowing on wing pressures at off-design conditions, 0o flap deflection, 
Mach=0.88, a=3o, ReC=30x106. 
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